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Introduction Presentation Resolution

Long-term growth

“Growth”: growth of the per-capita Gross Domestic Product (GDP).

Growth is a relatively recent phenomenon:

Year 1500 1820 1992

World population (millions) 425 1068 5441
Per-capita world GDP ($ of 1990) 565 651 5145

Source: Maddison (1995).

The average annual world-GDP growth rate is

0,04% from 1500 to 1820,
1,21% from 1820 to 1992.
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Dispersion of per-capita GDPs across countries in 1960
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Figure I.1
Histogram for per capita GDP in 1960. The data, for 113 countries, are the purchasing-power-parity (PPP)
adjusted values from Penn World Tables version 6.1, as described in Summers and Heston (1991) and Heston,
Summers, and Aten (2002). Representative countries are labeled within each group.

The comparison of levels of real per capita GDP over a century involves multiples as
high as 20; for example, Japan’s per capita GDP in 1990 was about 20 times that in 1890.
Comparisons of levels of per capita GDP across countries at a point in time exhibit even
greater multiples. Figure I.1 shows a histogram for the log of real per capita GDP for
113 countries (those with the available data) in 1960. The mean value corresponds to a
per capita GDP of $3390 (1996 U.S. dollars). The standard deviation of the log of real per
capita GDP—a measure of the proportionate dispersion of real per capita GDP—was 0.89.
This number means that a 1-standard-deviation band around the mean encompassed a range
from 0.41 of the mean to 2.4 times the mean. The highest per capita GDP of $14,980 for
Switzerland was 39 times the lowest value of $381 for Tanzania. The United States was
second with a value of $12,270. The figure shows representative countries for each range
of per capita GDP. The broad picture is that the richest countries included the OECD and

Source: Barro and Sala-i-Martin (2004). Per-capita GDP expressed in $ of 1996.
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Dispersion of per-capita GDPs across countries in 2000
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Figure I.2
Histogram for per capita GDP in 2000. The data, for 150 countries, are from the sources noted for figure I.1.
Representative countries are labeled within each group.

a few places in Latin America, such as Argentina and Venezuela. Most of Latin America
was in a middle range of per capita GDP. The poorer countries were a mixture of African
and Asian countries, but some Asian countries were in a middle range of per capita GDP.

Figure I.2 shows a comparable histogram for 150 countries in 2000. The mean here cor-
responds to a per capita GDP of $8490, 2.5 times the value in 1960. The standard deviation
of the log of per capita GDP in 2000 was 1.12, implying that a 1-standard-deviation band
ranged from 0.33 of the mean to 3.1 times the mean. Hence, the proportionate dispersion
of per capita GDP increased from 1960 to 2000. The highest value in 2000, $43,990 for
Luxembourg, was 91 times the lowest value—$482 for Tanzania. (The Democratic Re-
public of Congo would be poorer, but the data are unavailable for 2000.) If we ignore
Luxembourg because of its small size and compare Tanzania’s per capita GDP with the
second-highest value, $33,330 for the United States, the multiple is 69. Figure I.2 again

Source: Barro and Sala-i-Martin (2004). Per-capita GDP expressed in $ of 1996.
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Dispersion of growth rates across countries, 1960-2000
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Figure I.3
Histogram for growth rate of per capita GDP from 1960 to 2000. The growth rates are computed for 112
countries from the values of per capita GDP shown for 1960 and 2000 in figures I.1 and I.2. For Democratic
Republic of Congo (former Zaire), the growth rate is for 1960 to 1995. West Germany is the only country included
in figure I.1 (for 1960) but excluded from figure I.3 (because of data problems caused by the reunification of
Germany). Representative countries are labeled within each group.

Chad, Comoros, Venezuela, Senegal, Rwanda, Togo, Burundi, and Mali. Thus, except for
Nicaragua and Venezuela, this group comprises only sub-Saharan African countries. For
the 38 sub-Saharan African countries with data, the mean growth rate from 1960 to 2000
was only 0.6 percent per year. Hence, the typical country in sub-Saharan Africa increased
its per capita GDP by a factor of only 1.3 over 40 years. Just above the African growth
rates came a few slow-growing countries in Latin America, including Bolivia, Peru, and
Argentina.

As a rough generalization for regional growth experiences, we can say that sub-Saharan
Africa started relatively poor in 1960 and grew at the lowest rate, so it ended up by far the
poorest area in 2000. Asia started only slightly above Africa in many cases but grew rapidly
and ended up mostly in the middle. Latin America started in the mid to high range, grew
somewhat below average, and therefore ended up mostly in the middle along with Asia.

Source: Barro and Sala-i-Martin (2004). “Growth rate of per capita GDP, 1960-2000”:

average annual growth rate of per-capita GDP from 1960 to 2000 (e.g., 0.02 = 2% per year).
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Questions

Main questions addressed in Parts 1 and 2 of the course:

how to explain this long-term growth?

how to explain this dispersion of per-capita GDPs and of growth rates
across countries?

what economic policy to conduct in order to “optimize” long-term
growth?

Questions that can be judged more important, for human welfare, than
questions about short-term macroeconomics fluctuations (Lucas, 2003).
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Growth theories

“Exogenous-growth theory (resp. endogenous-growth theory)” ≡
theory in which the long-term growth rate is equal (resp. is not equal) to an
exogenous technical progress.

Exogenous-growth theories:

the model with an exogenous saving rate (studied in Chapter 1),
the model with an endogenous saving rate (studied in Chapter 2).

Endogenous-growth theories:

the model with learning by doing (studied in Chapter 4),
the model with product variety (studied in Chapter 5),
the Schumpeterian model (not studied in this course).

Joseph A. Schumpeter: Austrian economist, born in 1883 in Triesch,
deceased in 1950 in Salisbury, professor at Harvard University from 1927 to
1950.
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Solow-Swan model

The model with an exogenous saving rate, built independently by Solow
(1956) and Swan (1956), is called the “Solow-Swan model”.

Robert M. Solow: American economist, born in 1924 in New York,
professor at MIT since 1950, laureate of the Sveriges Riksbank’s prize in
economic sciences in memory of Alfred Nobel in 1987 “for his contributions
to the theory of economic growth”.

Trevor W. Swan: Australian economist, born in 1918 in Sydney, deceased
in 1989, professor at the Australian National University from 1950 to 1983.

This model is not micro-founded, unlike the other models studied in the
course, but it is nonetheless studied in Chapter 1 because

it remains a very useful benchmark to understand economic growth,
it serves to introduce some concepts used in the other models.
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Stocks and flows

In continuous time,

a stock is a variable that has a meaning only at a given time,
a flow is a variable that has a meaning only over an arbitrarily short
period.

For instance, capital Kt is a stock, investment It is a flow:

at time t, capital is Kt ,
from time t to time t + dt, where dt → 0+, investment is Itdt.

The derivative of a stock with respect to time is a flow.

For instance, absent capital depreciation,

·
K t ≡ lim

dt→0+

Kt+dt −Kt

dt
= It .

Unlike flows, stocks are necessarily continuous functions of time (except in
the presence of particular shocks like “earthquake shocks”).
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Instantaneous growth rate of a stock or a flow

Let Xt denote a stock or a flow, and dt a duration arbitrarily close to 0.

From time t to time t + dt, the growth rate of Xt is

Xt+dt − Xt

Xt
.

Per unit of time, this growth rate is

Xt+dt − Xt

Xtdt
.

At time t, the instantaneous growth rate of Xt is

lim
dt→0+

Xt+dt − Xt

Xtdt
=

·
X t

Xt
.

Olivier Loisel, Ensae Macroeconomics 1 (1/7): The Solow-Swan model Sept.-Dec. 2024 10 / 62



Introduction Presentation Resolution

Chapter outline

1 Introduction

2 Presentation

3 Resolution

4 Positive implications

5 Normative implications

6 Conclusion

7 Appendix
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Presentation of the model

1 Introduction

2 Presentation

General overview
Variables
Production function
Dynamics of capital

3 Resolution

4 Positive implications

5 Normative implications

6 Conclusion

7 Appendix
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Introduction Presentation Resolution

General overview of the model I

Capital (stock) and labor (flow) are used to produce goods (flow).

Goods (flow) are used for consumption (flow) and investment in new
capital (flow).

The saving rate (quantity of non-consumed, or saved, or invested goods /
total quantity of produced goods) is exogenous.

Capital (stock) evolves over time due to investment (flow) and capital
depreciation (flow).
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General overview of the model II

 

 

  

At exogenous 

s exogenous 

Capital Kt 

Output Yt = F(Kt,AtLt) 

Savings = Investment It = sYt Consumption Ct = (1-s)Yt 

Labor Lt 

Depreciation δKt 

(In blue: stock; in black: flow.)
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Exogenous variables

Neither flows nor stocks:

continuous time, indexed by t,
saving rate s, such that 0 < s < 1.

Flow:

labor = 1 per person.

Stocks:

initial capital K0 > 0,
population Lt = L0e

nt , where L0 > 0 and n ≥ 0,
productivity parameter At = A0e

gt , where A0 > 0 and g ≥ 0.
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Endogenous variables

Flows:

production Yt ,
consumption Ct .

Stock:

capital Kt (except at t = 0).

Solving the model ≡ getting each endogenous variable as a function of only
exogenous variables.
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Production function I

Production function F : Yt = F (Kt ,AtLt) (technological progress
increasing labor’s efficiency, called “Harrod-neutral” technological progress).

Roy F. Harrod: English economist, born in 1900 in London, deceased in
1978 in Holt, professor at Oxford University from 1923 to 1967.

Denoting by Fj the first derivative of F and Fj,j its second derivative with

respect to its jth argument for j ∈ {1, 2}, we make the following
assumptions on F :

1 F : R+2 → R+, (x , y) 7→ F (x , y); ∀(x , y) ∈ R+2, F (x , 0) = F (0, y) = 0.

2 F is strictly increasing in each of its arguments: ∀(x , y) ∈ R+2,
F1(x , y) > 0 and F2(x , y) > 0 (the marginal productivities of capital and
effective labor are strictly positive).
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Production function II

3 F is strictly concave in each of its arguments: ∀(x , y) ∈ R+2,
F1,1(x , y) < 0 and F2,2(x , y) < 0 (the marginal productivities of capital and
effective labor are strictly decreasing).

4 F is homogeneous of degree 1 (or “constant returns to scale”):
∀(x , y ,λ) ∈ R+3, F (λx ,λy) = λF (x , y).

5 F satisfies the Inada conditions (Inada, 1963):

∀y ∈ R+, lim
x→0+

F1(x , y) = +∞ and lim
x→+∞

F1(x , y) = 0,

∀x ∈ R+, lim
y→0+

F2(x , y) = +∞ and lim
y→+∞

F2(x , y) = 0.

Example of function satisfying these assumptions: Cobb-Douglas function
F (x , y) = xαy1−α with 0 < α < 1.
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Rewriting the production function

Denoting by κt ≡ Kt
AtLt

the stock of capital per effective-labor unit, we get

Yt

AtLt
=

1

AtLt
F (Kt ,AtLt) = F (κt , 1) ≡ f (κt)

where f has the following properties:

1 f : R+ → R+, z 7→ f (z), with f (0) = 0,

2 f is strictly increasing: ∀z ∈ R+, f ′(z) > 0,

3 f is strictly concave: ∀z ∈ R+, f ′′(z) < 0,

4 f satisfies the Inada conditions: lim
z→0+

f ′(z) = +∞ and

lim
z→+∞

f ′(z) = 0.
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Shape of the production function f 

0  κt = Kt/(AtLt) 

Yt/(AtLt) 

0 
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Other production functions

Part 1 of the tutorials considers other production functions, which do not
necessarily satisfy the same conditions:

Yt = K α
t H

β
t (AtLt)1−α−β, where Ht represents human capital,

Yt = K α
t R

β(AtLt)1−α−β, where R represents a stock of natural
resources in fixed quantity (like land),

with α > 0, β > 0 and α + β < 1.
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Assumptions on capital dynamics

1 From t to t + dt, an exogenous and constant fraction s of output Ytdt is
saved and invested in new capital, with 0 < s < 1.

2 From t to t + dt, an exogenous and constant fraction δdt of the capital
stock Kt disappears because of capital depreciation, with δ > 0.

↪→ The capital-stock dynamics is thus governed by the equation

·
K t = sYt︸︷︷︸

savings

− δKt︸︷︷︸
depreciation

.
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Resolution

1 Introduction

2 Presentation

3 Resolution

Differential equation
Steady state
Convergence to the steady state
Resolution in the Cobb-Douglas case

4 Positive implications

5 Normative implications

6 Conclusion

7 Appendix

Olivier Loisel, Ensae Macroeconomics 1 (1/7): The Solow-Swan model Sept.-Dec. 2024 23 / 62



Introduction Presentation Resolution

Differential equation

Dividing
·
K t = sYt − δKt by AtLt and using κt ≡ Kt/(AtLt) and

Yt/(AtLt) = f (κt), we get

·
K t

Kt
κt = sf (κt)− δκt .

Then, using

·
K t

Kt
=

·
lnKt =

·
ln κt +

·
lnAt +

·
ln Lt =

·
κt
κt

+

·
At

At
+

·
Lt
Lt

=

·
κt
κt

+ g + n,

we get the differential equation

·
κt = sf (κt)︸ ︷︷ ︸

savings

− (n+ g + δ) κt︸ ︷︷ ︸
dilution plus
depreciation

to be solved for a given κ0.
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Steady state I

Steady state (or stationary growth path, or balanced-growth path) ≡
situation in which κ0 is such that all quantities are non-zero and grow at
constant rates.

Dividing
·
κt = sf (κt)− (n+ g + δ) κt by κt , we get that

·
κt
κt

is constant over time ⇒ f (κt)

κt
is constant over time.

We show in the appendix that the function z 7→ f (z)/z is strictly
decreasing.
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Steady state II

The function z 7→ f (z)/z is therefore bijective, which implies that

f (κt)

κt
is constant over time ⇒ κt is constant over time.

As a consequence, at the steady state, κt is constant over time.

Replacing
·
κt with 0 in the differential equation and using the bijectivity of

z 7→ f (z)/z , we get that κt at the steady state is equal to the unique value
κ∗ > 0 such that

sf (κ∗) = (n+ g + δ) κ∗.
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Steady state III
 

κ* 0 

Dilution plus depreciation 
= (n+g+δ)κt 

Savings = sf(κt) 

 

0 

κt 
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Steady state IV

Differentiating sf (κ∗) = (n+ g + δ) κ∗ with respect to s, n, g or δ, and
using sf ′(κ∗) < n+ g + δ, we get that κ∗ is

increasing in s,
decreasing in n, g , δ,

as the previous figure illustrates.

If F (x , y) = xαy1−α with 0 < α < 1 (≡ “Cobb-Douglas case”), then we
have f (z) = zα and hence

κ∗ =

(
s

n+ g + δ

) 1
1−α

.
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Convergence to the steady state

Graphical representation of
·
κt = sf (κt)− (n+ g + δ) κt :

 

κ* 0 

Dilution plus depreciation 
= (n+g+δ)κt 

 

Savings = sf(κt) 

 

0 
κt 

�̇� 

κ0 

κt therefore converges to κ∗.
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Interpretation of the convergence to the steady state I

(In italics: per effective-labor unit.)

marginal productivity of capital F1(Kt ,AtLt) decreases
from +∞ (when Kt → 0) to 0 (when Kt → +∞)

⇓
marginal productivity of capital f ′ (κt) decreases
from +∞ (when κt → 0) to 0 (when κt → +∞)

⇓

average productivity of capital
f (κt )

κt
decreases

from +∞ (when κt → 0) to 0 (when κt → +∞)

⇓
...
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Interpretation of the convergence to the steady state II

⇓

ratio
savings sf (κt )

dilution plus depreciation (n+g+δ)κt
decreases

from +∞ (when κt → 0) to 0 (when κt → +∞)

⇓

savings sf (κt) ⋛ dilution plus depreciation (n+ g + δ) κt

when κt ⋚ κ∗

⇓
·
κt ⋛ 0 when κt ⋚ κ∗

The convergence of κt to κ∗ is thus due the decreasing nature of capital
productivity.
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Resolution in the Cobb-Douglas case I

If F (x , y) = xαy1−α with 0 < α < 1, then the differential equation becomes

·
κt = sκα

t − (n+ g + δ) κt .

Using ut ≡ κ1−α
t , we get

·
ut = (1− α) κ−α

t
·
κt and the differential equation

can thus be rewritten as

·
ut

s − (n+ g + δ) ut
= 1− α.
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Resolution in the Cobb-Douglas case II

Integrating this last equation, we get

−1

n+ g + δ
ln

[
s − (n+ g + δ) ut
s − (n+ g + δ) u0

]
= (1− α) t

and then

ut =
s − [s − (n+ g + δ) u0] e

−(n+g+δ)(1−α)t

n+ g + δ
.

Using κt = u
1

1−α
t and the expression of κ∗, we then get

κt =
{
(κ∗)1−α −

[
(κ∗)1−α − κ1−α

0

]
e−(n+g+δ)(1−α)t

} 1
1−α

,

which says that κ1−α
t converges exponentially, at the rate

(n+ g + δ) (1− α), to its steady-state value (κ∗)1−α.
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Resolution in the Cobb-Douglas case III

Let yt ≡ Yt
Lt

denote output per labor unit, which corresponds to per-capita
GDP.

Using yt = Atκ
α
t , we get

yt =
{
(κ∗)1−α −

[
(κ∗)1−α − κ1−α

0

]
e−(n+g+δ)(1−α)t

} α
1−α

A0e
gt .
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Positive implications Normative implications Conclusion Appendix

Positive implications

1 Introduction

2 Presentation

3 Resolution

4 Positive implications

Long-term growth
Effect of a permanent increase or decrease in a parameter
Conditional convergence, not absolute convergence

5 Normative implications

6 Conclusion

7 Appendix
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Positive implications Normative implications Conclusion Appendix

Long-term growth

Let Gt ≡
·
y t
yt

denote the growth rate of per-capita output.

We have yt = At f (κt), so

Gt =
·

ln yt =
·

lnAt +
·

ln f (κt) =

·
At

At
+

f ′(κt)
·
κt

f (κt)
= g +

f ′(κt)
·
κt

f (κt)
.

Since lim
t→+∞

f ′(κt )
·
κt

f (κt )
= 0, we get

lim
t→+∞

Gt = g ,

that is to say that the long-term growth rate is equal to the rate of
technological progress.
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Positive implications Normative implications Conclusion Appendix

The two sources of growth

Let kt ≡ Kt
Lt

denote the per-capita capital stock.

We have yt = F (kt ,At), so the two potential sources of growth of
per-capita output yt are

the increase in the per-capita capital stock kt ,
technological progress, that is to say the increase in productivity At .

In the short term, growth can come from these two factors.

In the long term, growth can come only from the second factor: without
technological progress (g = 0), kt → A0κ∗ when t → +∞, and there is no
long-term growth.
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Long-term path of ln(yt)

Let y∗t ≡ At f (κ∗) denote the steady-state value of yt .

The path of ln(yt) = ln(A0) + ln[f (κt)] + gt has for asymptote, as
t → +∞, the path of ln(y∗t ) = ln(A0)+ ln[f (κ∗)] + gt, in the sense that

lim
t→+∞

[ln(yt)− ln(y∗t )] = 0.

Therefore, the long-term path of ln(yt) is a straight line that has

a y-intercept which depends positively on A0, s,
a y-intercept which depends negatively on n, g , δ,
a slope which depends positively on g .
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Graphical representation in the Cobb-Douglas case
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Effect of a discontinuous change in a parameter

Following a discontinuous change in s, n, δ or g ,

kt remains a continuous function of time because it is a stock,

At remains a continuous function of time because it is a stock (if
g = g0 for t < T and g = g1 for t ≥ T , then At = A0e

g0t for t ≤ T
and At = AT e

g1(t−T ) for t ≥ T ),

yt remains a continuous function of time because yt = F (kt ,At).

Let ct ≡ Ct
Lt

denote per-capita consumption.

We have ct = (1− s)yt , so

following a discontinuous change in n, δ or g , ct remains continuous,
following a discontinuous change in s, ct varies discontinuousy.
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Effect of a permanent increase in s
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ln(yt) 
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t 

(The economy is assumed to be initially at the steady state.)
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Effect of a permanent decrease in n or δ
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(The economy is assumed to be initially at the steady state. The speed of convergence

of ln(yt ) to its new long-term path is lower than on page 41.)
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Effect of a permanent increase in g
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(The economy is assumed to be initially at the steady state. The speed of convergence

of ln(yt ) to its new long-term path is higher than on page 41.)
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Conditional convergence, not absolute convergence

Conditional convergence of per-capita output levels (in logarithm) across
countries: long-term convergence of ln(yt) across countries that have
different y0s but the same

technological parameters A0, g , f (.),
parameters governing the dynamics of capital and labor s, n, δ,

because these countries have the same long-term path of ln(yt).

No absolute convergence: no long-term convergence of ln(yt) across
countries that have different parameters A0, g , f (.), s, n, δ.

An economy grows all the more rapidly as it is far away from its own
long-term path, not all the more rapidly as it is poor.
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Example of conditional convergence
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Example of divergence
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In the data, no sign of absolute convergence...

No convergence of per-capita GDPs within a group of heterogeneous countries

42 CHARLES I. JONES

Figure 26: The Lack of Convergence Worldwide
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database publishes current and constant-price GDP numbers for 47 sub-Saharan African

countries between 1991 and 2004, but as of mid-2006, the UN Statistical Office had ac-

tually received data for only one half of the observations, and had received no constant-

price data at all for this period for 15 of these countries. Young uses measures of con-

sumer durables (e.g. radios, television sets, bicycles) and other information from the

Demographic and Health Surveys for developing countries to provide an alternative es-

timate of growth rates. He finds that living standards in Sub-Saharan African countries

were growing at around 3.5 percent per year during the last two decades, comparable

to growth rates in other developing countries.

Barro (1991), Barro and Sala-i-Martin (1992), and Mankiw, Romer and Weil (1992)

provide a key insight into why the convergence pattern appears in Figure 25 but not

in Figure 26. In particular, they show that the basic predictions of neoclassical growth

theory hold for the world as a whole. Countries around the world are converging —

but to their own steady-states, rather than to the frontier. If one conditions on determi-

nants of a country’s steady state (such as the investment rates in physical and human

capital), then one sees that countries below their steady states grow rapidly and those

Source: Jones (2015). “Growth rate, 1960-2011”: average annual growth rate from 1960 to 2011.
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...but some signs of conditional convergence

Convergence of per-capita GDPs within a sub-group of homogeneous countries

(the OECD countries)

THE FACTS OF ECONOMIC GROWTH 41

Figure 25: Convergence in the OECD
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Source: The Penn World Tables 8.0. Countries in the OECD as of 1970 are shown.

Figure 25 shows one of the more famous graphs from the empirical growth litera-

ture, illustrating the “catch-up” behavior of OECD countries since 1960. Among OECD

countries, those that were relatively poor in 1960 — like Japan, Portugal, and Greece —

grew rapidly, while those that were relatively rich in 1960 — like Switzerland, Norway,

and the United States — grew more slowly. The pattern is quite strong in the data; a

simple regression line leads to an R-squared of 75%.21

Figure 26 shows that a simplistic view of convergence does not hold for the world

as a whole. There is no tendence for poor countries around the world to grow either

faster or slower than rich countries. For every Botswana and South Korea, there is a

Madagascar and Niger. Remarkably, 14 out of the 100 shown in the figure exhibited a

negative growth rate of GDP per person between 1960 and 2011.

There is some question as to whether or not these persistent negative growth rates

are entirely accurate. Young (2012) notes that the data on which these growth rates are

based is often of very poor quality. For example, the United Nations National Accounts

21See also Baumol (1986) and DeLong (1988).

Source: Jones (2015). “Growth rate, 1960-2011”: average annual growth rate from 1960 to 2011.
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Conditional-convergence tests

The empirical literature that tests conditional convergence usually estimates,
on panel data, an equation of type

1

T
ln

(
yi ,t+T

yi ,t

)
= β0 + β1 ln (yi ,t) + β2Xi ,t + ui ,t ,

where Xi ,t is a vector of control variables including si , ni , δi (assuming that
countries have access to the same technology).

The conditional-convergence hypothesis then corresponds to β1 < 0 and is
usually not rejected by the data.
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Golden rule of capital accumulation I

Steady-state per-capita consumption is equal to

(1− s) y∗t = (1− s)At f (κ
∗).

It is positive and goes to 0 as s → 0 and as s → 1.

As a consequence, it is maximal for a value sgr ∈ ]0; 1[ of s.

Using sf (κ∗) = (n+ g + δ) κ∗, we can rewrite it as

At [f (κ
∗)− (n+ g + δ) κ∗] .
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Golden rule of capital accumulation II

As a consequence, sgr is the unique value of s such that

f ′(κ∗) = n+ g + δ

(i.e. such that the marginal productivity of capital per effective-labor unit is
equal to the sum of the capital depreciation and dilution rates).

This last equation is called the “golden rule of capital accumulation”
(Phelps, 1966).

Edmund S. Phelps: American economist, born in 1933 in Evanston,
professor at Columbia University since 1971, laureate of the Sveriges
Riksbank’s prize in economic sciences in memory of Alfred Nobel in 2006
“for his analysis of intertemporal tradeoffs in macroeconomic policy”.

On the next page, we first determine Point A by using the golden rule of
capital accumulation, and then we deduce Points B and C; the segment AB
represents the maximal vertical distance between the production curve and
the dilution-plus-depreciation straight line.
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Golden rule of capital accumulation III
 

Steady-state capital stock 
at the golden rule = κ*

gr 
0 

Dilution plus depreciation 
= (n+g+δ)κt 

 
Output = f(κt) 

 

0 
κt 

Steady-state consumption 
at the golden rule 

= (1-sgr)f(κ*
gr) 

Savings at the 
golden rule = sgrf(κt) 

 

Straight line of slope n+g+δ 

B 

A 

Steady-state savings at 
the golden rule = sgrf(κ*

gr)  C 

Note : κ*
gr denotes the value of κ* when s = sgr. 
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When s > sgr I

When s > sgr , a decrease in s towards sgr would increase per-capita
consumption (1− s) yt at all times:

in the long term (by definition of sgr ),
in the short term (as the increase in 1− s would outweigh the decrease
in yt).

In this case, there is dynamic inefficiency (≡ situation in which one could
increase per-capita consumption at all times), due to capital
over-accumulation.

To the extent that agents’ welfare depends positively on their consumption
in the short and long terms, this reduction of s towards sgr is desirable.
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When s > sgr II
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(The economy is assumed to be initially at the steady state.)
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When s < sgr I

When s < sgr , an increase in s towards sgr

would increase per-capita consumption in the long term (by definition
of sgr ),
would reduce it in the short term (as the decrease in 1− s would
outweigh the increase in yt).

In this case, there is no dynamic inefficiency.

To assess the desirability of this increase in s towards sgr , we need to weight
the utility of consumption in the short term and the utility of consumption
in the long term (which is done in Chapter 2).
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When s < sgr II
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(The economy is assumed to be initially at the steady state.)
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Main predictions of the model

In the long term, growth comes only from technological progress.

The effect of capital accumulation on growth disappears in the long term
because of the decreasing marginal productivity of capital.

There is conditional convergence of per-capita output levels (in logarithm)
across countries.

There is dynamic inefficiency, due to capital over-accumulation, when the
saving rate exceeds its golden-rule value.
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Two limitations of the model

The saving rate s is exogenous. If it were endogenous, then

could we still have dynamic inefficiency?
what role should a policy affecting the saving rate play?

↪→ Chapter 2 endogenizes the saving rate.

The rate of technological progress g is exogenous. If it were
endogenous, then

could some policies affect it?
what role should they play?

↪→ Chapters 4 and 5 (“endogenous-growth theories”) endogenize the rate of
technological progress.
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Proof that z 7→ f (z)/z is strictly decreasing

Function f is strictly concave, and hence such that any arc is above its
chord.

In particular, ∀y ∈ R+ \ {0}, ∀λ ∈]0, 1[,

f (λy) = f [(1− λ)0+ λy ] > (1− λ)f (0) + λf (y) = λf (y).

Setting λ = x
y with 0 < x < y , we then get: ∀(x , y) ∈ (R+ \ {0})2, if

x < y then
f (x)
x > f (y )

y .

Function z 7→ f (z)/z is therefore strictly decreasing.
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